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Abstract: Nonprehensile manipulation, such as pushing and pulling, enables1

robots to move, align, or reposition objects that may be difficult to grasp due2

to their geometry, size, or relationship to the robot or the environment. Much of3

the existing work in nonprehensile manipulation relies on parallel-jaw grippers or4

tools such as rods and spatulas. Multi-fingered dexterous hands offer richer con-5

tact modes and versatility for handling diverse objects to provide stable support6

over the objects, which compensates for the difficulty of modeling the dynamics of7

nonprehensile manipulation. We propose Dexterous Nonprehensile Manipulation8

(DexNoMa), a method for nonprehensile manipulation which frames the prob-9

lem as synthesizing and learning pre-contact dexterous hand poses that lead to10

effective pushing and pulling. We generate diverse hand poses via contact-guided11

sampling, filter them using physics simulation, and train a diffusion model condi-12

tioned on object geometry to predict viable poses. At test time, we sample hand13

poses and use standard motion planning tools to select and execute pushing and14

pulling actions. We perform 840 real-world experiments with an Allegro Hand,15

comparing our method to baselines. The results indicate that DexNoMa offers16

a scalable route for training dexterous nonprehensile manipulation policies. Our17

pre-trained models and dataset, including 1.3 million hand poses across 2.3k ob-18

jects, will be open-source to facilitate further research. Supplementary material is19

available here: dexnoma.github.io.20

Keywords: Nonprehensile manipulation, dexterous hand21

1 Introduction22

Nonprehensile actions are fundamental to how humans and robots interact with the physical23

world [1, 2, 3, 4]. These actions permit the manipulation of objects that may be too large, heavy,24

or geometrically complex to grasp directly. While there has been tremendous progress in nonpre-25

hensile robot manipulation [5, 6, 7, 8, 9], most work uses simple end-effectors such as parallel-jaw26

grippers, rods [10, 11], or spatulas [12]. In contrast, multi-fingered hands with high degrees-of-27

freedom (DOF) such as the Allegro Hand or LEAP Hand [13] enable contact patterns that can be28

especially useful for stabilizing complex, awkward, or top-heavy objects, or for coordinating contact29

across multiple objects. However, despite their promise and recent progress [14], leveraging high-30

DOF hands for nonprehensile manipulation remains relatively underexplored due to the challenges31

of modeling hand-object relationships and planning feasible contact-rich motions.32

In this paper, we study pushing and pulling objects using the 4-finger, 16-DOF Allegro Hand.33

Our insight is to recast this problem into one of synthesizing effective pre-contact hand poses,34

an approach inspired by recent success in generating large-scale datasets for dexterous grasp-35

ing [15, 16, 17, 18, 19, 20]. We propose a scalable pipeline for generating hand poses for pushing36

and pulling objects. This involves contact-guided optimization and validation via GPU-accelerated37

physics simulation with IsaacGym [21]. These filtered hand poses are then used to train a generative38

diffusion policy conditioned on object geometry, represented using basis point sets [22].39
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Figure 1: Three examples (one per column) of nonprehensile manipulation using DexNoMa with a 4-finger, 16-
DOF Allegro Hand. The top row shows the starting object configuration with its goal rendered as a transparent
overlay, while the bottom row shows the result after the robot’s motion. DexNoMa synthesizes diverse hand
poses conditioned on object geometry, handling flat (left), volumetric (middle), and tall (right) objects.

At test time, we use visual data to reconstruct an object mesh in physics simulation. The trained40

diffusion policy uses this mesh to generate diverse hand poses for pushing or pulling. We then41

validate the resulting hand poses in simulation, and execute the best-performing action in the real42

world. We call this pipeline Dexterous Nonprehensile Manipulation (DexNoMa). Figure 1 shows43

several real-world examples where the hand pose differs depending on object geometry. Overall,44

our experimental results across diverse common and 3D-printed objects demonstrate that DexNoMa45

is a promising approach for generalizable object pushing and pulling. It outperforms alternative46

methods such as querying the nearest hand pose in our data or using a fixed spatula-like hand pose,47

highlighting the need for a diffusion model to generate diverse hand poses.48

To summarize, the contributions of this paper include:49

• A scalable pipeline for generating and filtering dexterous hand poses for pushing and pulling.50

• A diffusion model for geometry-conditioned hand pose prediction for nonprehensile manipulation.51

• A motion planning framework to execute these poses for nonprehensile manipulation in the real52

world, with results across 840 trials showing that DexNoMa outperforms alternative methods.53

• A dataset of 1.3 million hand poses for pushing and pulling across 2.3k objects with corresponding54

canonical point cloud observations.55

2 Related Work56

Nonprehensile Robot Manipulation. Classical nonprehensile manipulation includes pushing, slid-57

ing, rolling, and tilting, and has a long history in robotics [1, 2, 3, 4]. Planning methods for non-58

prehensile manipulation often assume access to object models or priors [23, 24, 25]. Another recent59

planning-based method explores nonprehensile interaction with high-DOF hands in simulation by60

analyzing contact reasoning and wrench closure [26]. In contrast, our work targets real-world push-61

ing and pulling using a high-DOF hand applied to diverse and geometrically complex objects. Re-62

cent learning-based methods have extended nonprehensile manipulation beyond classical planning,63

including extrinsic dexterity systems [5, 27] and those based on predicting object dynamics such as64

HACMan [6, 7], CORN [8], and DyWA [9]. Other works approach pushing as a precursor to grasp-65

ing, often in planar settings with simple parallel-jaw grippers for multi-object manipulation [28, 29],66

or use bimanual systems for nonprehensile tasks using multi-link tools [30]. None of these works67

study learning for single-hand pushing and pulling with dexterous hands. Furthermore, many prior68

benchmarks focus on pushing single flat objects on a surface, such as a T-shape object [11], or use69

spatulas to move small cubes and granular media [12, 10]. Our work directly targets larger and more70

complex objects, including those that might topple or require coordinated multi-surface contact.71
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Dexterous Grasping Synthesis and Datasets. A substantial body of research focuses on generat-72

ing and evaluating grasp poses for multi-fingered hands. Pioneering efforts such as Liu et al. [31]73

create a dataset of 6.9K grasps using the GraspIt! [32] software tool, while Jiang et al. [33] synthe-74

size human hand poses by using a conditional Variational Autoencoder [34]. More recent efforts75

significantly scale grasp generation with tools such as differentiable contact simulation [35, 36] or76

optimization over an energy function based on Differentiable Force Closure (DFC) [37]. Our work77

falls in the latter category, which has facilitated the generation of diverse grasping datasets such as78

DexGraspNet [16] with 1.32M grasps followed by DexGraspNet 2.0 [17] with 427M grasps. These79

pipelines generate hand poses by optimization over an energy function, filter them using physics80

simulators, train generative diffusion models for grasp synthesis, and typically include some fine-81

tuning or evaluation modules [38, 15]. While our pipeline also uses energy-based pose optimization82

and filtering, our focus is on generating hand poses for nonprehensile manipulation.83

Learning-Based Dexterous Manipulation. Learning-based approaches for robotic grasping and84

manipulation have rapidly expanded in recent years [39, 40]. While some recent work emphasizes85

fine-grained bimanual manipulation using parallel-jaw grippers [41, 42], our focus is on learning86

single-arm manipulation with high-DOF dexterous hands such as the LEAP [13], Allegro, and87

Shadow hands. These hands have been applied to a variety of tasks, such as in-hand object rota-88

tion [43, 44, 45, 46, 47], object singulation [48, 49], multi-object manipulation [50, 20, 51, 29],89

and bimanual systems [52, 53]. While showing the versatility of dexterous hardware, these works90

focus on largely prehensile interactions. Prior learning-based systems with high-DOF hands for91

non-prehensile behaviors demonstrate tasks such as rolling objects or picking up plates as examples92

of learning from 3D data [54] or human videos [55]. Recently, Chen et al. [56] synthesize task-93

oriented dexterous hand poses for certain nonprehensile tasks such as pulling drawers. However,94

none of these methods directly study pushing or pulling as their primary manipulation mode.95

3 Problem Statement and Assumptions96

We study nonprehensile object manipulation on a flat surface using a single-arm robot with a high-97

DOF multi-finger dexterous hand (e.g., the Allegro Hand). By “nonprehensile,” we specifically refer98

to pushing or pulling in this paper. We assume that there exists one object O on the surface with99

configuration Sobj 2 SE(3), and that the surface’s friction properties facilitate object pushing. We100

use P to indicate the object’s point cloud sampled from its surface. Let H be the space of possible101

nonprehensile hand poses, where H 2 H is defined as H = (✓, T ). Here, ✓ 2 Rd is the joint102

configuration of the d-DOF robot hand, and T 2 SE(3) is the end-effector pose of the robot’s wrist103

consisting of translation and orientation. A trial is an instance of nonprehensile pushing or pulling,104

defined by a given direction udir 2 R3 (with z-component of 0) resulting in the target object position105

as utarg 2 R3. The objective is to generate a hand pose H such that, if a motion planner moves the106

hand to H and then translates it along udir, the object moves closer to the target utarg. The object’s107

distance to utarg must be below a threshold for a trial to be considered a success.108

4 Method109

DexNoMa consists of the following steps. First, we generate a large dataset of hand poses for110

nonprehensile pushing and pulling (Sec. 4.1). Second, we use this data to train a diffusion model111

to synthesize hand poses conditioned on object geometry (Sec. 4.2). Third, during deployment, we112

generate hand poses and perform motion planning to do the pushing or pulling (Sec. 4.3).113

4.1 Dataset Generation for Dexterous Nonprehensile Pushing and Pulling114

We first generate diverse hand poses for pushing and pulling various objects in simulation.115

To do this, we take inspiration from prior work on generating diverse hand poses for grasp-116

ing [15, 16, 17, 18, 20, 50] by casting the hand synthesis problem as minimizing an energy function117

via optimization [37]. Unlike those works, our focus is on pushing and pulling actions instead of118
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Figure 2: Overview of DexNoMa. We present a large-scale dataset of hand poses specifically for pushing or
pulling, and leverage it to train a diffusion model. During execution time, given an object, we obtain its basis
point set representation [22] and pass that to our trained diffusion model, which uses the architecture from [38].
This model synthesizes diverse floating pre-contact hand poses formed from our large-scale data generation
pipeline (Sec. 4.1). Given these hand poses, we then check their feasibility in a physics simulator by adding the
arm back in and performing motion planning [57]. We rank the feasible hand poses (e.g., “3” is infeasible in
the example here) and select the best performing one (e.g., “4” in our example) and execute it in the real world.

grasping. To enable optimization, we first define a set of candidate contact points sampled across119

the hand surface. Different regions of the hand have different candidate points to encourage broad120

contact across the palm and fingers. For the palm and finger (excluding fingertips) regions, we sam-121

ple points uniformly over the rigid body surface. For the fingertips, we sample from a denser set of122

points uniformly on the unit hemisphere for each tip. See the Appendix for details of the distribution123

of candidate contact points (Figure 10 and Table 2).124

With the sampled contact point candidates, we run an optimization algorithm following the sampling125

strategy from [15, 16] that iteratively minimizes an energy function E to generate hand poses. We126

adapt the energy function from [15] to better suit our nonprehensile manipulation tasks, resulting in:127

E = Efc + wdisEdis + wjointsEjoints + wpenEpen + wdirEdir + warmEarm, (1)

where Efc is a force closure estimator [37], Edis penalizes hand-to-object distance (thus encouraging128

proximity), Ejoints penalizes joint violations, and Epen penalizes penetration between hand-object,129

hand-table and hand self-collision contacts. See [15, 16] for further details. The w terms are all130

scalar coefficients; we adopt the values from prior work and tune the weights (see the Appendix) for131

the following two new terms. To adapt the energy from Eq. 1 to pushing or pulling in a particular132

direction udir 2 R3, we introduce Edir and Earm, which use the normal vector of the palm vpalm 2133

R3. The Edir term encourages vpalm to align with udir, and Earm encourages hand poses that are134

kinematically feasible when attached to the robot arm. Formally, we define Edir and Earm as:135

Edir = �
uT
dirvpalm

kudirk2kvpalmk2
and Earm = max

�
0, (vpalm)z

�
(2)

where (vpalm)z is the z-component of the palm’s normal vector (in the world frame). Intuitively,136

aligning udir and vpalm promotes more stable object-palm directional contact. Furthermore, if the137

palm faces upwards, then the rest of the arm must be below it. Thus, it is likely to lead to an138

infeasible robot configuration due to robot-table intersections, so Earm is nonzero (i.e., worse). To139

inject randomness (and thus diversity) in the sampling process, we randomly resample a subset of140

the contact point indices from the set of valid candidates (Figure 10) when generating a new hand141

pose. We use RMSProp [58] to update translation, rotation and joint angles with step size decay,142

then minimize the energy function with Simulated Annealing [59] to adjust parameters.143

Hand Pose Validation in Simulation. After optimizing contact points to generate candidate hand144

poses, we must validate whether they can lead to successful pushing or pulling. To do this, we use145

IsaacGym [21], a GPU-accelerated physics simulator that has been used in prior work for filtering146

grasp poses [15, 16]. We define a push or a pull as successful if, after executing a 20 cm translation,147

the object’s center is within 3 cm of the target position and the object’s orientation changes by no148

more than 45 degrees relative to its original configuration. The optimization process has a low149
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Figure 3: Examples of nonprehensile hand pushing poses from optimizing our energy function (Eq. 1). These
have all been validated in IsaacGym simulation. In all examples, the intended object pushing direction is to the
right. These data points are used to train our diffusion model (see Sec. 4.2).

success rate because it does not account for the full dynamics of pushing and pulling. Thus, we150

augment successful hand poses by adding slight noise to the pose parameters. We get 10X more151

augmented hand poses (from initially successful poses), and over the whole augmented dataset,152

58% are successful. From extensive parallel experiments, we generate a dataset containing 2,391153

objects with 1,387,632 successful hand poses. See the Appendix for more details.154

4.2 Training a Diffusion Model to Predict Hand Poses155

To generate hand poses, we adapt a conditional U-Net [60] from the diffusion policy architec-156

ture [11], and train it with the Denoising Diffusion Probabilistic Models (DDPM) objective [61].157

Diffusion models are well-suited for this task as they can learn complex, high-dimensional distribu-158

tions. The forward process gradually adds Gaussian noise to the hand configuration H , while the159

reverse process reconstructs the original pose H by iteratively denoising conditioned on the object’s160

geometry. The model is trained to minimize denoising error. To represent the observation, we use a161

4096-dimensional Basis Point Set (BPS) [22] representation B 2 R4096 based on the object’s point162

cloud P . This representation, which is also used in [15, 38], encodes each object as a fixed-length163

vector of shortest distances between canonical basis points and the points in P . BPS captures geo-164

metric properties in a compact manner and simplifies the design of the diffusion model. Given this165

trained diffusion model, at test time it can be used to generate diverse hand poses which we can166

select for motion planning. See Figure 2 and Appendix A.2 for more information.167

4.3 Arm-Hand Motion Planning and Evaluation168

During deployment, the diffusion model generates candidate hand poses. We then integrate the169

Franka arm into full arm-hand motion planning to select hand poses which are kinematically fea-170

sible and avoid environment collisions, such as arm-table intersections (which are not considered171

in Sec. 4.1). See Figure 2 (right half) for an overview. Each hand pose H = (✓, T ) is initially172

expressed in the object frame. We use the object’s initial configuration Sobj and intended direction173

udir to transform H to the world frame, and supply that to the cuRobo planner [57] to generate a174

complete motion plan for the Franka arm. In this process, we discard infeasible trajectories (and175

thus, the associated hand poses) to only keep the feasible arm-hand trajectories. To select which of176

the feasible trajectories to execute, we associate each with a custom analytical score V , defined as:177

V (H = (✓, T )) = ↵Lgoal + �Lcoll + �Ldir, (3)

where Lgoal measures the Euclidean distance between the object’s final position and the target po-178

sition, Lcoll indicates whether a collision occurred during execution (1 if a collision occurs, 0 other-179

wise), and Ldir encourages the palm’s orientation to align with the pushing direction. For Ldir, we180

set it equal to the Edir term from the energy function (Eq. 1). The ↵,�, and � are hyperparameters.181

Multi-step Planning. While we mainly study DexNoMa for single open-loop pushes (or pulls) to182

targets, our framework naturally extends to multi-step planning. In scenarios with obstacles, we183

first compute a collision-free global path using RRT* [62]. Then, we sequentially plan hand poses184
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3D-Printed Objects                 Daily Objects

Figure 4: The objects we use in our real-world nonprehensile
manipulation experiments, including 3D printed and com-
mon (“Daily”) objects. See Sec. 5.2 for more details.

Figure 5: Visualization of Lgoal, Lcoll, and Ldir

values in V (H) from Eq. 3 on three simulated
hand poses. See Sec. 5.3 for more details.

to reach each intermediate waypoint. Given an object, the same hand pose may be feasible only185

in certain pushing or pulling directions due to robot and hand kinematics. The waypoints from186

RRT* may require planning pushes across challenging directions, which highlights the importance187

of generating diverse hand poses for varying object positions and directions.188

5 Experiments189

Through simulation and real-world experiments, we aim to investigate the following questions: (1)190

Can we learn feasible and effective hand poses from our large-scale dataset? (2) Is DexNoMa robust191

to different pushing and pulling directions for visually diverse objects? (3) Can DexNoMa serve as192

a reliable module for downstream manipulation tasks such as multi-step pushing around obstacles?193

5.1 Simulation Experiments and Results194

Data Size # of Objects

2% 41.67 ± 10.21
20% 102.67 ± 5.85
50% 110.33 ± 29.67

100% 169.33 ± 15.18

Table 1: Number of objects
with at least one feasible push-
ing hand pose out of 300.

We evaluate the quality of the hand pose generation pipeline using195

IsaacGym [21]. To quantify the effectiveness of our trained model196

and dataset, we report the number of successfully pushed objects as a197

function of training data size. We train our diffusion model on vary-198

ing subsets of the full dataset (of 1.3M hand poses) and evaluate on199

300 unseen objects from the test set. For each test object, we sam-200

ple 200 candidate hand poses. An object is considered “successful”201

if at least one feasible hand pose results in success. Table 1 reports202

results over 3 different seeds, which shows that our model generates203

feasible pushing poses more reliably with larger training sets, which validates large-scale supervi-204

sion. The growth is not strictly linear, suggesting room for improvement via better model tuning205

or data strategies. Qualitatively, our generated hand poses are diverse across object geometries and206

exhibit pushing intent (see the Appendix for more discussion). A common failure mode is that some207

poses still collide with the object, which motivates the inclusion of the collision term in Eq. 3.208

5.2 Real-World Experiments209

We evaluate DexNoMa on a real robot to check if our nonprehensile hand poses successfully trans-210

fer to reality. Our hardware setup consists of a Franka Panda arm equipped with a four-finger,211

16-DOF Allegro Hand (see the Appendix). It operates over a tabletop cutting board with dimen-212

sions 60 cm⇥60 cm. We use a mix of objects, including 3D-printed and common (“Daily”) items213

(shown in Figure 4). All evaluation objects are unseen during training. For 3D-printed objects, we214

use their known meshes to directly compute their BPS representation. For the other objects, we215

follow the pipeline proposed in [63] to obtain real-world object point clouds (and thus, the BPS).216

We reconstruct object meshes by using Nerfstudio [64] to compute COLMAP reconstructions [65].217

We also use Stable Normal [66] to generate normal maps. Then, we employ 2D Gaussian Splat-218

ting [67] to obtain the point clouds. While this reconstruction pipeline introduces some noise, it is219
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Figure 6: Nonprehensile manipulation success rates from DexNoMa and baselines, across different 3D printed
(left) and daily objects (right), and with three directions evaluated. Each bar aggregates success rates from 40
trials (left bar plot) and 30 trials (right bar plot). See Sec. 5.2 and 5.3 for more details.

sufficient for DexNoMa to predict effective hand poses. In contrast, we empirically observed that220

optimization-based methods are more sensitive to mesh quality and often fail under these conditions.221

Baselines and Ablations. We compare DexNoMa with the following methods.222

• Pre-Trained Grasp Pose: We use a pre-trained grasp synthesis model from Lum et al. [15] using223

NeRF [68]. For each object, we train a NeRF representation, then query their pre-trained model224

for a grasp. This evaluates how well a grasping-centric model generalizes to nonprehensile tasks.225

• Nearest Neighbor (NN): Given a test object, we find the training object with the most similar BPS226

representation (in terms of Euclidean distance) and retrieve its associated hand poses. We then do227

the same motion planning pipeline as in DexNoMa. This tests out-of-distribution generalization228

with a retrieval-only approach compared to our proposed generative model.229

• DexNoMa w/o Ranking: An ablation that excludes analytical ranking of hand poses (ignores230

Eq. 3) and executes a random feasible pose. This tests the usefulness of Eq. 3 in selecting poses.231

Experiment Protocol and Evaluation. For each object, we test three pushing directions uniformly232

distributed around a circle. Along each direction, the robot executes the hand pose and planned233

motion five times, all with a fixed push length of 20 cm. A human manually places the object in a234

relatively consistent pose between trials. A trial is successful if the object’s center is within 3 cm of235

the target position, the hand maintains contact throughout, and it does not lead to task failure modes236

such as toppling or loss of control. For NN and DexNoMa w/o Ranking, we randomly sample hand237

poses among the feasible planned actions. For Pre-trained Grasp Pose, we execute the best actions238

from its output. For our method, we execute the one with the highest analytical score from Eq. 3.239

5.3 Real-World Results240

We summarize quantitative results in Figure 6, which shows that DexNoMa outperforms or matches241

alternative methods for both object categories. As shown in Figure 7, the Pre-Trained Grasp Pose242

baseline suffers from two major issues. First, the hand pose is not conditioned on the pushing243

direction, which means during the push, the object is likely to slide off the hand due to limited244

support (Figure 7, second row). Second, some objects are unsuitable for grasping due to their245

geometry or awkward aspect ratios (e.g., a flat box with limited area for enclosure). Additionally, the246

similarity-based Nearest Neighbor baseline struggles due to limited granularity in object geometry247

matching, motivating the need for our geometry-conditioned generative model. For DexNoMa w/o248

ranking, we observe that its hand poses are more likely to collide with the table or objects. To249

further investigate this ablation, Figure 5 shows three different hand poses. The first one has a low250

collision score because it is easy to collide with the table, while the third collides with the objects251

and scores low on the palm direction. The second hand pose leads to a successful push in real-world252

experiments. This suggests the importance of our ranking system via Eq. 3. DexNoMa outperforms253

baselines in all directions tested in Figure 6, demonstrating the robustness of its generated hand254

poses for nonprehensile manipulation. Figure 7 (first row) demonstrates using the palm and thumb255

to provide strong support moving the object forward, and the third row shows using the thumb and256

index finger to form a circular shape support for the thinner upper parts of the object while providing257

force at the bottom, aiding stable movement. For more rollouts, see the Appendix and the website.258
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Figure 7: Comparison between DexNoMa and baselines. The first two rows show DexNoMa (success) and
Pre-Trained Grasp (failure) while pushing a 3D-printed vase forward (i.e., away from the robot). The last two
rows show DexNoMa (success) and NN (failure) while pushing a ranch bottle to the right.

Figure 8: Example of a typical failure case using the
Fixed Hand Pose strategy, which topples the spray.

Figure 9: Example of multi-step pushes using
DexNoMa, which avoids the central obstacle.

Fixed Hand Pose: Inspired by prior pushing work [12], we manually define a “spatula” hand pose259

with the fingers spread flat (see Figure 8) to assess whether simple flat-hand strategies suffice for260

diverse objects. We perform a case study on the 6 objects in Figure 4 that are taller than 20 cm.261

We push each object 10 times, with 5 pushes for each of 2 directions, (the third direction results in262

kinematic errors). We get a relatively low 18/60 success rate, suggesting insufficient object support.263

Multi-step Planning. Selecting a kinematically feasible hand pose for a given object state Sobj264

and direction udir is challenging in multi-step planning, as different waypoints may require different265

hand poses. Our method resolves this by identifying valid poses across object configurations and266

coupling pose selection with kinematic feasibility (see Sec. 4.3). By doing so, DexNoMa can be267

used to perform multiple pushes. Figure 9 shows a multi-step pushing sequence using DexNoMa.268

The robot uses two different hand poses to push the 3D-printed vase, as the first hand pose may not269

be ideal for the second hand pose, which shows the benefit of re-planning.270

6 Conclusion271

In this work, we propose DexNoMa, a dataset and method for nonprehensile object pushing and272

pulling using a high-DOF Allegro Hand. Our extensive real-world results show that DexNoMa en-273

ables diverse and effective pre-contact hand poses for different combinations of objects and pushing274

directions. We also demonstrate its usage for multi-step planning. We hope that this inspires future275

work on dexterous nonprehensile robotic manipulation.276
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7 Limitations277

While promising, the DexNoMa approach has some limitations that motivate exciting directions for278

future work. First, it is difficult to get high success rates during the hand poses synthesis phase, and279

thus our method has room to improve for more data-efficient sampling. Second, we do not consider280

orientation when we evaluate pushing or pulling in the real world, drawing an incomplete picture of281

performance. Third, we only study pushing and pulling as examples of nonprehensile manipulation,282

which does not exhaustively characterize all possible nonprehensile manipulation procedures. Fi-283

nally, it would be an interesting next step to make nonprehensile pushing or pulling truly closed-loop284

so it can react in real-time to unexpected disturbances such as object toppling.285
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