
A Additional Details of DexNoMa472

A.1 Dataset Generation and Statistical Analysis473

Embodiment Part Finger Tip Finger Link Palm

Link No. tip_1, tip_2, tip_3, tip_4 1,2,3,5,6,7,9,10,11,14,15 palm_link

Number of Contact Candidates / each 96 16 128

Table 2: Number of contact candidates on different parts of the Allegro hand. We specify potential contacts all
over the hand to encourage whole-hand (especially palm) nonprehensile manipulation on the object.

link 1-3

tip_1tip_2tip_3

tip_4

link 14,15

Figure 10: Contact candidates on the Allegro
hand. Refer to Table 2 for the number of con-
tacts on each link.

Figure 11: A visualization of an example of augmen-
tations. Lightyellow indicates the hand pose with the
perturbation, and lightblue is the original one.

Parameter Value

wfc 0.5
wdis 500
wpen 300.0
wspen 100.0
wjoints 1.0
w↵ 3.0
wfp 0.0
wtpen 100.0
wdirection 200.0
wkinematics 100.0

Table 3: Weight parameters.

Parameter Value

Switch Possibility 0.5
µ 0.98
Step Size 0.005
Stepsize Period 50
Starting Temp. 18
Annealing Period 30
Temp. Decay 0.95

Table 4: Optimization hyperparameters.

474

During dataset generation, we specify the contact candidates according to Figure 10 and Table 2, and475

we set the weight parameters (from Eq. 1) according to values listed in Table 3. For the optimization476

we discussed in Sec. 4.1, the detailed hyperparameters are in Table 4.477

In the original hand pose generation procedure, we mainly consider the object geometry and encour-478

age contact between selected contact candidates all over the hand and the object surface. However, it479

is crucial to test pushing to validate the quality of the nonprehensile hand poses. Initially, we obtain480

a low success rate of all generated hand poses, so we augment each successful hand pose 10 times.481

These perturbations involve small changes in rotation (max 2.5 deg), translation (max 0.005 m) and482

joint pose (0.05 rad) using a Halton sequence. Figure 11 shows an example of a random original483
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hand pose (lightblue color) and 4 different perturbed hand poses (lightyellow color). By doing so,484

we get a large dataset of only successful hand poses, which we use for training the diffusion model.485

Figure 12 shows the distribution of joint angle values across our dataset. Most joints span the full486

range between their lower and upper bounds, and tend to have one or several modes. Those modes487

may lead to “general” stable hand poses for pushing motions. Other joint values may vary depending488

on particular object geometries. Figure 13 shows a breakdown of object categories and the frequency489

of the top 20 objects in our dataset.490
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Figure 12: Visualization of the distribution of joint angle values in our proposed dataset, demonstrating the
diversity of our generated hand poses. The number on the top right corner of each subfigure indicates the joint
index. The green dashed lines on the edge of x-axis indicate the lower/upper bounds of each joint angle values.

Figure 13: Visualization of the top 20 objects in terms of pushing hand poses frequency in our proposed dataset.
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A.2 Training Details491

We train our model with one NVIDIA 4090 GPU on a desktop. Detailed training and model param-492

eters are shown in Table 5. We also show the training curves with training loss and validation loss493

on different scales of the dataset in Figure 14, which is relevant to our experiments in Sec. 5.1.494

Component Parameter Default / value

Data Config
observation_dim 4096
pushingpose_dim 25

Model Config
name ConditionalUnet1D
input_dim 25
global_cond_dim 4096

DDPM Scheduler

beta_schedule squaredcos_cap_v2
clip_sample True
num_diffusion_timesteps 100
prediction_type epsilon

Training Config

batch_size 16
n_epochs 200
print_freq 10
snapshot_freq 25

Optim Config

optimizer Adam
lr 1⇥ 10�4

weight_decay 1⇥ 10�6

beta1 0.9
amsgrad False
eps 1⇥ 10�8

grad_clip 1.0

lr Scheduler
name cosine
num_warmup_steps 500

EMAModel power 0.75

Table 5: Configuration and training hyperparameters of the diffusion model.

Validation LossTraining Loss

— 2%    — 20%    — 50%    — 100%

Figure 14: Training curves on different scales of the dataset. See Sec.5.1 for more discussion.

B Additional Details of Experiments495

B.1 Experiment Details496

Our physical experiment setup consists of a Franka Panda manipulator equipped with an Allegro497

Hand, as shown in Figure 15. We also place an L515 RealSense camera above the table, which498

is only used for path planning in multi-step planning experiments in Sec. 5.3 and Sec. B.4. The499

surface we use for all experiments is a commercially available product purchased from Amazon500

16



(product_link). Since our focus is on nonprehensile hand pose generation, we assume that the sur-501

face’s friction properties are sufficient to support pushing interactions. We leave a more detailed502

investigation of how physical properties influence dexterous nonprehensile manipulation as future503

work.504

Figure 15: Our physical experiment setup including a Frank Panda robot with an attached Allegro Hand. The
camera is only used for high-level path planning.

We select 8 3D-printed objects and 6 real-world objects, covering flat, volumetric, and tall objects,505

as shown in Figure 16. Each object presents unique challenges for pushing. For example, when506

the robot hand approaches flat objects (e.g., Cake, Cookie Box) it may risk colliding with the table.507

In addition, tall objects (e.g., Lamp, Spray) frequently topple during pushing due to a high center508

of mass. While our method also suffers from these failure modes (particularly object toppling), it509

outperforms baselines, which topple objects more frequently. This motivates our case study on using510

a fixed hand pose to push objects taller than 20 cm. While fixed hand poses can reliably work for511

objects with simple geometries, they frequently fail on these taller objects. As discussed in Sec. 5.3,512

our results highlight the need for hand poses that provide more stable object support for transporting.513

Cookie Box
214g

18cm*16cm*9cm

Black Box
261g

8cm*10cm*9cm

Ranch
520g

5cm*10cm*21cm

Blender
108g

11cm*10cm*14cm

Bottle
59g

7cm*7cm*24cm

Cake
149g

17cm*17cm*7cm

Cow
89g

7cm*20cm*12cm

Coconut Water
46g

7cm*8cm*24cm

Toy Avocado
165g

17cm*21cm*23cm

Spray
61g

7cm*10cm*26cm

Vase
128g

11cm*11cm*17cm

Bowl
190g

19cm*19cm*11cm

Lamp
57g

6cm*6cm*21cm

Camera
148g

7cm*16cm*11cm

Figure 16: 3D meshes, mass and physical dimensions of all objects tested in real-world experiments. Dimen-
sions are listed as (x, y, z).

We list the number of successful trials out of 5 for each method and direction in Table 6. A514

blank entry (-) indicates that the robot could not execute the motion due to kinematic infeasibil-515

ity. While DexNoMa has marginally more infeasible trials than the baselines, this is expected be-516

cause DexNoMa generates diverse hand orientations beyond top-down poses. All methods execute517

pushes for 20 cm, which is relatively long within the robot’s workspace, and this can be infeasible518
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for many hand poses. In contrast, the Pre-Trained Grasp Pose baseline tends to result in consistently519

top-down hand poses, which are generally easier to execute due to reachability and kinematic con-520

straints. Despite counting all kinematically infeasible trials as failures, DexNoMa outperforms the521

baseline methods, demonstrating its robustness on pushing or pulling tasks.522

DexNoMa DexNoMa w/o Ranking Nearest Neighbor Pre-Trained Grasp Pose

Dir.1 Dir.2 Dir.3 Dir.1 Dir.2 Dir.3 Dir.1 Dir.2 Dir.3 Dir.1 Dir.2 Dir.3

Blender 5/5 4/5 4/5 3/5 3/5 5/5 2/5 2/5 2/5 1/5 1/5 1/5
Vase 5/5 3/5 4/5 2/5 4/5 4/5 4/5 4/5 3/5 2/5 3/5 2/5
Bottle 4/5 4/5 5/5 3/5 3/5 3/5 0/5 4/5 3/5 3/5 2/5 2/5
Bowl 4/5 1/5 - 4/5 1/5 - 2/5 2/5 1/5 3/5 2/5 2/5
Cake 4/5 3/5 4/5 4/5 4/5 3/5 3/5 1/5 1/5 1/5 0/5 1/5
Lamp 1/5 1/5 1/5 2/5 2/5 2/5 1/5 0/5 0/5 0/5 1/5 1/5
Cow 5/5 3/5 3/5 3/5 2/5 3/5 1/5 1/5 1/5 0/5 3/5 2/5
Camera 2/5 2/5 4/5 2/5 3/5 3/5 1/5 1/5 3/5 1/5 4/5 2/5

3D Avg./ % 67.5 52.5 62.5 57.5 55.0 57.5 35.0 37.5 35.0 27.5 40.0 32.5

Black Box 4/5 4/5 3/5 3/5 1/5 2/5 1/5 1/5 2/5 3/5 3/5 2/5
Toy Avocado 4/5 - 1/5 3/5 - 2/5 - - 1/5 3/5 0/5 4/5
Ranch 3/5 2/5 3/5 4/5 1/5 2/5 3/5 1/5 4/5 1/5 - 2/5
Spray 3/5 - 1/5 0/5 - 1/5 2/5 - 2/5 0/5 0/5 2/5
Coconut Water 2/5 3/5 4/5 2/5 2/5 1/5 2/5 1/5 2/5 0/5 0/5 0/5
Cookie Box - 5/5 3/5 - 2/5 5/5 - 3/5 2/5 2/5 2/5 1/5

DO Avg./ % 53.3 40.0 50.0 40.0 20.0 43.3 30.0 16.7 30.0 26.7 20.0 43.3

All Avg./ % 61.4 47.1 57.1 50.0 40.0 51.4 32.9 28.6 32.9 27.1 31.4 37.1

Table 6: Detailed experiment results for each object and direction combination. “3D Avg.” refers to the average
success rate over all 3D-printed objects, “DO Avg.” is that of daily objects and “All Avg.” is that of all 14 test
objects. These results correspond to the bar charts in Figure 6.

B.2 More Successful Rollouts523

We provide additional example visualizations of successful rollouts of DexNoMa in Figure 17. For524

videos, please refer to our website: dexnoma.github.io.525

Figure 17: Successful rollouts of DexNoMa, one per row.
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B.3 Results and Analysis of Baseline Methods526

We visualize 3 examples of the nearest neighbor (NN) retrieval results and the trained NeRF repre-527

sentation in Figure 18. The retrieved NN objects are similar in shape and scale of the query object528

(left 3 columns in Figure 18). However, their coarse geometry granularity is insufficient to generate529

robust hand poses. For example, with the Toy Avocado, our method selects a hand pose that pushes530

from the bottom to avoid sliding or toppling. In contrast, the NN method retrieves a vase-like object,531

where pushes from the middle make more sense. The irregular geometric shape at the bottom of532

the vase-like object could potentially cause more collisions and may increase the difficulty of solv-533

ing the kinematics. The right 3 columns in Figure 18 visualize the NeRF input to the Pre-Trained534

Grasp Pose method, since we use their pre-trained model taking in NeRF representations. Though535

a common failure mode of the pre-trained grasp pose is that the object slips from the hand because536

the palm is oriented at an improper angle, we observe notable visual noise in the NeRF represen-537

tation, which may also deteriorate performance of this baseline. For more discussions of baseline538

performance, see Sec. 5.3.539

 

Figure 18: Nearest Neighbor retrieval results of three test objects (left three columns) and visualization of
trained NeRF (right three columns).

B.4 Multi-step Planning540

Figure 19: Path planning using RRT* for multi-step planning. The first column shows the visualization of path
planning results. The second and third columns show two consecutive hand poses for pushing the object along
the path. The first example is the same as the one shown in Fig. 9.

Here, we provide more information and context on top of the Multi-step Planning section in Sec. 5.3.541

These experiments explore the potential for DexNoMa’s hand poses to support long-horizon plan-542

ning. As shown in Figure 15, an Intel RealSense L515 camera captures a top-down view of the scene543

(see Figure 19). A toy placed in the scene serves as an obstacle. We extract its segmentation mask544

19



using Grounded SAM 2 [69, 70, 71, 72, 73], define the toy’s position at its (estimated) center, and545

set a fixed 20 cm radius for path planning. The start and goal positions are manually assigned. We546

use RRT* as a high-level planner to compute a collision-free path in the 2D image space. Through547

camera calibration, we convert the 2D waypoints into 3D coordinates in the robot frame. For each548

edge along the planned path, DexNoMa generates a corresponding hand pose, and the robot pushes549

the object towards the next waypoint.550

We test with two episodes that cover more pushing directions. The key insight in these experiments551

is that hand poses should be considered and evaluated while considering the kinematics of the arm552

as the motion becomes more complex. In the second row of Figure 19, a similar hand pose is able553

to finish the two-step pushing tasks while avoiding the obstacle. However, the first row of Figure 19554

shows the need to change hand poses to better fit the object pose and the intended pushing direction.555

This motivates our use of motion planning and pose ranking to facilitate stable and smooth multi-556

step pushing motions.557
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